skip to main content


Search for: All records

Creators/Authors contains: "Poshyvanyk, Denys"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Prior work has developed numerous systems that test the security and safety of smart homes. For these systems to be applicable in practice, it is necessary to test them with realistic scenarios that represent the use of the smart home, i.e., home automation, in the wild. This demo paper presents the technical details and usage of Helion, a system that uses n-gram language modeling to learn the regularities in user-driven programs, i.e., routines developed for the smart home, and predicts natural scenarios of home automation, i.e., event sequences that reflect realistic home automation usage. We demonstrate the HelionHA platform, developed by integrating Helion with the popular Home Assistant smart home platform. HelionHA allows an end-to-end exploration of Helion’s scenarios by executing them as test cases with real and virtual smart home devices. 
    more » « less
    Free, publicly-accessible full text available December 6, 2024
  2. Code completion aims at speeding up code writing by predicting the next code token(s) the developer is likely to write. Works in this field focused on improving the accuracy of the generated predictions, with substantial leaps forward made possible by deep learning (DL) models. However, code completion techniques are mostly evaluated in the scenario of predicting the next token to type, with few exceptions pushing the boundaries to the prediction of an entire code statement. Thus, little is known about the performance of state-of-the-art code completion approaches in more challenging scenarios in which, for example, an entire code block must be generated. We present a large-scale study exploring the capabilities of state-of-the-art Transformer-based models in supporting code completion at different granularity levels, including single tokens, one or multiple entire statements, up to entire code blocks (e.g., the iterated block of a for loop). We experimented with several variants of two recently proposed Transformer-based models, namely RoBERTa and the Text-To-Text Transfer Transformer (T5), for the task of code completion. The achieved results show that Transformer-based models, and in particular the T5, represent a viable solution for code completion, with perfect predictions ranging from ~29%, obtained when asking the model to guess entire blocks, up to ~69%, reached in the simpler scenario of few tokens masked from the same code statement. 
    more » « less
  3. An increasingly popular set of techniques adopted by software engineering (SE) researchers to automate development tasks are those rooted in the concept of Deep Learning (DL). The popularity of such techniques largely stems from their automated feature engineering capabilities, which aid in modeling software artifacts. However, due to the rapid pace at which DL techniques have been adopted, it is difficult to distill the current successes, failures, and opportunities of the current research landscape. In an effort to bring clarity to this cross-cutting area of work, from its modern inception to the present, this article presents a systematic literature review of research at the intersection of SE & DL. The review canvasses work appearing in the most prominent SE and DL conferences and journals and spans 128 papers across 23 unique SE tasks. We center our analysis around the components of learning , a set of principles that governs the application of machine learning techniques (ML) to a given problem domain, discussing several aspects of the surveyed work at a granular level. The end result of our analysis is a research roadmap that both delineates the foundations of DL techniques applied to SE research and highlights likely areas of fertile exploration for the future. 
    more » « less